Automated Reasoning is the logical complement to LLMs
Imandra empowers LLMs with automated logical reasoning at scale, turning opaque models into transparent ones, empowering users and developers to see assumptions and conclusions involved in responses with precise auditable reasoning.
Traditionally, these types of techniques were reserved to highly specialized teams of PhDs at places like NASA. Thanks to recent advances, Imandra is highly automated and scaled to most difficult industrial applications. language.
Watch our explainer video
Lots of exciting announcements soon,
stay in touch:
Improving Sampling Efficiency
One of the primary weaknesses of current machine learning algorithms (and particularly - deep learning) is the vast amounts of data typically needed for training. Using a state-space description, Imandra's region decomposition tool can split potentially infinite domains into a finite number of regions over which the behavior of a specified system is invariant. By sampling from regions instead of the whole state-space, we can make sure that our learning algorithm encounters all possible edge cases with less data, improving efficiency and performance. The potential for this kind of symbolic, semantic information to augment statistical training data is something we've previously demonstrated within deep reinforcement learning, and we believe to be critical for the next generation of AI
Read the ArticleExample 1Example 2Probabilistic Symbolic Execution
We're developing a new probabilistic programming library for Imandra, allowing users to quickly and easily generate custom hierarchical probabilistic models representing distributions over their algorithms' input. This statistical information can then be automatically propagated through the existing symbolic model to form a distribution over outputs. Alongside Imandra's capacity to generate Python output that can be used to query and parse large datasets, this allows unprecedented insight into the behavior of potentially highly complex and dynamic algorithmic systems. An exciting and increasingly important application we're already researching is verifying the fairness properties of decision-making algorithms with respect to population demographics. Imandra forms an invaluable tool for checking against these kinds of increasingly pervasive standards and regulations.
Example NotebookVerifying Learnt Models
The vast majority of work within formal methods has involved analyzing models fully specified by the user. However, more and more critical parts of algorithmic pipelines are constituted by models that are instead learned from data. The task of analyzing these kinds of models presents fresh challenges for the formal methods community and has seen exciting progress in recent years. While scalability is still a significant, open research problem - with state-of-the-art models often having millions of parameters - we've already made progress by analyzing and verifying simple yet powerful models learned from real-world data. In the future, we'll be taking this work further by expanding upon both the size and variety of machine learning architectures that Imandra is able to verify.
Example NotebookRead our Article